

Designing Services and Clients for Ambient Lab

Smart Space

Cristina McLaughlin
Department of Electrical Engineering

University of Hawaii at Manoa

Honolulu, United States

cemclaug@hawaii.edu

Abstract— Smart spaces are physical environments enhanced

by computation and networking technology to create a complex

ecosystem that users can interact with. Smart spaces are a blend

of the Internet of Things (IoT), Cyber-physical Systems (CPS),

information processing, high-speed networking, and audio and

visual sensors, that work in unison to provide context aware

services. Ambient Edge is a distributed platform for high

performance Edge networks and is being using as the backbone

infrastructure for developing the Ambient Lab Smart Space. A

service is software that performs a task while also managing the

underlying hardware of a sensor or device; a client connects to and

uses data from one or more services. This paper summarizes the

prototyping of two Smart Space services for Ambient Edge:

interactive LEDs and Kinect body tracking, along with respective

clients to demonstrate the operation of each service.

Keywords—Smart Spaces, Internet of Things, Edge Computing,

user-driven service, context aware

I. INTRODUCTION

Smart spaces are physical environments enhanced by
computation and networking technology to create a complex
ecosystem that users can interact with. Devices within a space
can range from small distance or noise sensors to objects that
take voice commands to smart lighting solutions using
projectors. The devices are coordinated to provide context-
aware network services for the user.

Smart home technology is one example of smart space
device integration into daily life. These devices have gained
traction in helping with home monitoring, security,
entertainment, and in handling regular household tasks.
Predictions suggest that by 2023 there will be 70.6 million smart
homes [1]. Smart spaces also have the potential to improve
personal and professional productivity. Analysts from the

Gartner IT Symposium/Xpo identified people-centric smart
spaces as the influence for the top ten strategic technology trends
of 2020 [2]. Gartner defines a strategic technology as one with
“substantial disruptive potential beginning to break out of an
emerging state into broader impact and use”. They have
identified trends like multiexperience, empowered Edge,
autonomous things, and other technology shown in Fig. 1.

 Unfortunately, unlike smart homes and smart home
devices, smart spaces are not one size fits all. They will be highly
variant due to location, application, and user ability. For
instance, a smart space used for entertainment will be designed
differently from a space used by a workplace or a school. The
main goal of designing a space is to meet the needs of its users
and understand features necessary for each location.

The Ambient Edge project (Edge) led by Dr. Darren Carlson
is a .NET based networking framework designed to enable fast
creation and expansion of smart spaces through real-time low-
latency messaging. It addresses the problem of high variability
between each smart space by employing plug-and-play
architecture, allowing designers to pick and choose the perfect
devices for their ecosystem. An Ambient Edge smart space is
comprised of Edge Services and Clients, all of which run on
hosts throughout the space. An Edge Service is software that
performs a task while managing underlying hardware of a sensor
or device. An Edge Client connects and consumes one or more
Edge Services. This paper summarizes the prototyping of two
Smart Space services for Ambient Edge: interactive light
emitting diodes (LEDs) and Kinect based body tracking, along
with respective clients that demonstrate the operation of each
service.

The remainder of the paper is structured as follows. Section
2 presents further background information on the Ambient Edge
framework. Section 3 describes the hardware and software
design process of the LED controller. Section 4 describes the
same process in relation to the Kinect body tracking. Section 5
concludes the report.

II. BACKGROUND

A. Edge Computing

Edge computing is considered to be a descendant or

extension of cloud computing. It is defined as “processing or

computing close to or at the edge of a network, where the

component, device, or application that produces data resides”

[3-6]. To paraphrase, computing or network resources that lay

between data sources and data centers.

Fig. 1. 2020 Gartner IT Symposium/Xpo on people-centric technology

trends [2]

Edge computing has become a viable solution to many

challenges that have risen in the age of modern computing. The

main challenge industries are facing is latency and response

time in computation. In many cases, sending data to or

receiving computations from a distant cloud layer is not

realistic. Edge computing provides the benefit of computing

within close proximity of the data source meaning latency and

response time are drastically reduced [7]. Research conducted

in 2015 demonstrated that a facial recognition application’s

response time was reduced from 900ms to 169ms by moving

the computation to the edge away from the cloud [8]. In another

example, Bombadier, an aerospace company, installed sensors

into its jet engines [9]. Using edge computing, the sensor could

instantly determine and relay the status of the engine, providing

short term emergency data such as if the engine was

overheating or if there was too little fuel. The second benefit

of edge computing deals with bandwidth-greedy applications.

With technology that generates significant amounts of data,

relying on edge rather than cloud computing reduces network

traffic drastically [10]. Since the computation occurs at the

source of data—or very close to it—traffic loads are

consequently reduced. The last benefit of edge computing is a

reduction in storage and energy consumption at the device layer

[4].

B. Ambient Edge

Ambient Edge is a .NET based plug-and-play framework
designed to handle real-time, low latency messaging and is
based on the concept of edge computing that is discussed above.
An Edge Network is a local area network that connects different
devices within one network hop for low-latency communication.
An Edge Host is a computer, virtual machine, or container that
runs Edge related software such as an Edge Service. Services
are logic running on host that perform tasks within the smart
space such as managing sensors or high-level data output.
Lastly, an Edge Client is also software running on a host that
connects to and uses data from one or more Edge Services.

We can combine all the above terminology into the example
that follows. An Edge Host could be a Raspberry Pi that is
connected to the Edge Network. The Pi is also controlling the
hardware of a distance sensor and an LED strip. The Pi would
then be offering two Edge Services: i) controls and provides data
from the distance sensor, and ii) control over the LED strip. An
Edge Client could be a program running on another computer
desktop on the network. It would subscribe to both services and
tell the Pi to turn the LED strip on when someone walks within
2 feet of the distance sensor.

The Ambient Edge communication protocol is based on
Representational State Transfer (REST) concepts [11]. Services
are decomposed into resources that are addressed through URLs
and accessed using predefined methods like GET, PUT,
OBSERVE, and DELETE. GET is used to retrieve data, but it
is read-only so there is no risk in mutating or corrupting the data.
PUT is used to update an existing service resource. The
OBSERVE method is unique to Edge; it’s used to connect to a
resource and stream data continuously and asynchronously.
Lastly, DELETE is used to remove a resource such as an
observer.

Within a service there are resources that can be accessed
such as properties (exposes an attribute of the service), actions
(invoke a function of the service), or events (data source that
pushes data asynchronously from the service). Messages
between Services and Clients are then encoded using Google
Protocol Buffers (protobuf) which is used for serializing
structured data [12].

Now we will extend the previous example and relate it to the
communication protocol. The distance sensor service’s data and
configuration could be accessed using the URLs
hcsr04.distance.data and hcsr04.distance.config, respectively.
HCSR04 is the name of the hardware, distance is the attribute,
and data and config are two ways to interact with the attribute.
The Edge Client would then use GET to access distances it
senses, or use PUT to configure the sampling rate of the sensor.

III. AMBIENT EDGE LED SERVICE

This section will discuss the design and implementation of
the Edge LED service. It will detail the project objectives and
final design.

A. Design Goals

The task was to design an LED Service and Client that could

control the WS2812 Integrated Light Source—referred to as

NeoPixels. NeoPixel strips are composed of individually

addressable RGB color pixels using single-wire control

protocol. Red, green, and blue LEDs are integrated with a

driver chip into a surface mounted package that composes a

single light pixel in the strip [13]. The final goal of the Edge

Service was to dynamically control the NeoPixel hardware

according to an Edge Client’s requests. The micro-goals that

comprise the foundation of this project are described in the User

Story. A user story is a description of an Edge Service from the

perspective of a client. The interactions with the service were

decided below:

• A user can turn the LED strop on or off at any time

• A user has a choice of different light shows

• A user can run the lights for a set period of time or
indefinitely

• Multiple users can make lighting requests to the same
LED strop at the same time

• A user can request the current lighting information

• A user can dim up or dim down the lights over a default
period of time or a specified period of time; the user can
also specify how dim or how bright the final setting will
be

B. Final Design

1) Hardware

This section will discuss the final hardware design. The

required hardware was: Raspberry Pi 3, Arduino Uno, 100µF

capacitor, 2.1mm female DC adapter, and a NeoPixels strip.

Fig. 2 shows the schematic diagram. The Data In pad on the

LEDs are connected to pin 5 on the Arduino. It also shows how

to connect external power to the NeoPixels. External power to

the Arduino was unnecessary because it drew enough through

the Raspberry Pi connection.

The NeoPixel strip was not directly connected to the

Raspberry Pi SPI because problem arose in previous iterations.

NeoPixels use a single-wire control protocol so they can be

controlled using a single general-purpose input/output (GPIO)

pin on the Raspberry Pi. However, the control signal has very

strict timing requirements that some boards (such as the

Raspberry Pi) cannot achieve. The Raspberry Pi runs a multi-

tasking Linux operating system and does not have real-time

control over its GPIO pins [14]. To test it, serial peripheral

interface (SPI) was enabled, and the core frequency was set to

250 in the boot file. However, running tests still showed

dimness and flickering during lighting transitions on the

NeoPixels. By chaining an Arduino to the Pi, timing was

delegated out to a platform that could handle it.

2) Software: Arduino

The next step was verifying that the NeoPixels could run off

of the Arduino by testing lighting programs. The FastLED

Arduino library which is used for programming addressable

LED strips [15]. The library deals with the low-level math,

brightness settings, power usage, and performance while

keeping the front-end easy to read and write. FastLED is also

a well-developed and supported library meaning there were

many lighting examples to pull from.

The next step was finding a way to have a .NET application

communicate with the Arduino. This was more challenging

than expected because an Arduino is microcontroller, and its

code is a binary CPU dependent executable. Replacing or

modifying existing code during runtime requires uploading and

overwriting old code, which brought up questions on how the

client’s new requests would be handled by the Arduino. In

addition, the basic structure of Arduino code executes whatever

is in the loop() function continuously. This meant the Arduino

would also have to asynchronously listen for requests from the

.NET service to stop or run certain lighting events.

The Sharer library [16] is an Arduino/.NET serial

communication library that allows a desktop application to read

or write variables, and perform remote function calls on the

Arduino. Fig. 3 shows how the Sharer protocol works between

a .NET app and the Arduino program.

A selection of lighting examples from the FastLED library

were saved into separate functions. The Sharer connection was

initialized in the setup() function and the loop() function was

dedicated to Sharer.run() which runs the internal kernel of

Sharer that decodes the commands received over serial port.

There was an early attempt to standardize the running time for

each lighting function on the Arduino by having a millisecond

for-loop encapsulate the lighting code, however later in the

project this caused runtime and threading problems that stalled

the whole system. It was decided that all timing and high-level

logic should be maintained on the .NET side, rather than

splitting it between both applications. The final Arduino code

houses the lighting code, simply listens for commands, and

immediately stops all logic when the commands cease.

Fig. 3. Raspberry Pi to Arduino to NeoPixels hardware setup

Fig. 2. Raspberry Pi to Arduino to NeoPixels hardware setup

TABLE I. LED SERVICE API

Verb Path Behavior

GET .lighting

Returns the current lighting config as a

structured object including state, mode,

and running time

PUT .lighting.config

Accepts new lighting configuration data

from remote clients, it changes the

services lighting state, mode, and

running time to match the request

3) Software: LED Service

Finally, after dealing with all the low-level design

problems, work started on the .NET service application. This

section will be discussing the development process, important

function handlers, and problems encountered along the way.

The first task was determining the Service’s API based on

the User Story discussed in Subsection A. The LED Service

API is shown in Table 1.

The LED Service uses the Google Protobuf serialization

format to structure the data processed by the service. The

LightingConfig message has three different fields shown

below. It describes the current state of the LEDs as mode,

state, and running time. Mode indicates if the LEDs are set on

a timed or untimed event. Running time is the amount of time

in milliseconds a timed lighting event will run for. State

indicates the lighting function the Arduino will be told to run.

The fields hue, saturation, start_value, and end_value are used

for dimming or brightening the LEDs over a set period of

time. Lastly, the color field was added in later for ease of use.

The user can specify a string color input instead of using the

HSV to set the lighting.

message LightingConfig{

 Mode requested_mode = 1;

 enum Mode{
 TIMED = 0;
 UNTIMED = 1;
 }

 int32 running_time = 2;

 State requested_state = 3;

 enum State{
 TURNOFF = 0;
 BLINKRAINBOW = 1;
 SINELON = 2;
 RAINBOW = 3;
 RAINBOWWITHGLITTER = 4;
 CONFETTI = 5;
 BPM = 6;
 JUGGLE = 7;
 FIRE = 8;
 PACIFICA = 9;
 SINGLECOLOR = 10;
 DIM = 11;
 }

 int32 hue = 4;
 int32 saturation = 5;

 int32 start_value = 6; // Brightness of the
SINGLECOLOR state or starting value for DIM
 int32 end_value = 7; // Ending value for DIM
 string color = 8; //String input for color,
precedence over HSV values, ignored if null
 }

The initialization portion of the code sets up the Edge and

Sharer connection. Sharer requires the serial port that the

Arduino is connected to and the baud rate, which is the rate at

which information is transferred over the port. For desktop,

the port name is “COM3”, while on the Pi it is

“/dev/ttyUSB0”. The baud rate was set to the maximum speed

at 115200. After setting the strings, a new Sharer connection

was instantiated, Sharer.Connect() was called to connect the

.NET application to the Arduino application, and Sharer.Call()

was used to communicate the current LED state to the

Arduino.

After determining the basic service structure, next were the

GET and PUT handlers. The GET handler was

straightforward as it just returns the LightingConfig object

back to the client. The PUT handler was more difficult; it

parses the LightingConfig update and runs the new LED

configuration asynchronously in the background of the main

program thread. This allows the Edge service to continue

listening for new PUT or GET requests while running the

requested lighting event. During development there were

several issues with threading timing and the Sharer

connection. In addition to full task cancellation, the last

Sharer.Call() had to fully finish before starting any new tasks.

The timing issues were handled by sleeping the main thread

before instantiating a new task to allow the last Sharer.Call()

to finish.

4) Software: LED Client

The LED Edge Client’s development was straightforward.

It was a simple program to test the functionality of the LEDs.

The software connects to the Edge Network and chooses to

subscribe to the LED service. From there it makes GET and

PUT requests from lighting information and configurations.

During testing multiple Edge Clients were also instantiated to

show how more than a single client can connect to the Edge

Service. As soon as a new Client PUTs a new lighting

configuration, the LED service would immediately show the

change. This was the simplest way to handle new requests, but

in the future queuing could be implemented as well. A final

demonstration of the LEDs in action can be here.

IV. AMBIENT EDGE KINECT SERVICE

This section will discuss the design and implementation of
the Edge Kinect service. It will discuss the project objectives,
background information, and final design. The Kinect service
was more complicated to implement because there were plans to
integrate Edge into Unity as a package and create a scene using
data from the service as a stretch goal.

https://www.youtube.com/watch?v=dVWVj0gZqws&feature=youtu.be

A. Design Goals

The following were the objectives for this project. The first

task was to design a Kinect Service that was strongly based off

the Azure Kinect Developer Kit API [17]. The Kinect is a

camera with sophisticated computer vision and AI sensors. It

contains a 1-MP depth sensor, 7-microphones for speech and

sound capture, a 12-MP RGB video camera, an accelerometer,

and a gyroscope [18]. Since there are multiple data sources the

Kinect can collect, this project focused solely on accessing IMU

and body-tracking. The goal for the Kinect Client was to have

an Edge-Integrated Unity scene run while collecting and

displaying the data from the service.

The following User Story describes some of the smaller

milestones for this project:

• A user can collect and IMU and body tracking data from
the Kinect

• A user cannot configure the Kinect directly; it can only
be configured by a smart space manager since it is a room
wide service

• Multiple users can make IMU and body tracking requests
at the same time

• A user can play with a simple client in Unity to visualize
how the body-tracking data can be used

B. Azure Kinect Background Information

The Azure Kinect Sensor Software Development Kit

application programming interface (API) and the body tracking

API were used as the foundation for the service messages [18-

19]. The API is primarily in C; however, the documentation

also covers the C++ wrapper. This was the first problem

encountered when beginning the Kinect Service because Edge

uses C# and .NET. However, there was a .NET NuGet wrapper

available, which was used to complete the service [20].

Another .NET package was also found for the Body Tracking

API [21]. There is no official documentation for the C#

wrapper on the API page, so the C++ API was used as a

reference instead to build the service functionality and .proto

file.

The Azure Sensor Development Kit also has a Kinect

Camera Viewer that can be downloaded to see the different

functionalities shown in Fig. 4. This includes an infrared

camera, depth camera, color camera, and IMU data. The left-

hand panel also shows the different camera configurations

possible. As stated above, these configurations are set to a

default in the Edge Service and can later be changed by some

service manager.

The Azure Body Tracking API documents the three key

components of a body frame. Each frame contains a collection

of body structs, a 2D body index map, and the input capture that

generated the results. The Edge Kinect service focusses on

collecting data from the body structs. Each struct contains

Body ID, 32 joint positions, and joint orientations. Joint

position and orientation are estimates relative to the global

depth sensor frame for reference. The position is specified in

millimeters and the orientation is expressed as a normalized

quaternion. The estimates also have a confidence level of none,

low, medium, and high; these levels indicate whether a joint is

out of range, predicted, or within frame. Fig. 5 shows the joint

Fig. 4. Kinect Camera Viewer

Fig. 5. Kinect bodytracking joints and axis

TABLE II. KINECT SERVICE API

Verb Path Behavior

GET .imu

Returns the current IMU data as a

structured object including timestamp,

XYZ gyroscope, XYZ accelerometer,

and temperature

OBSERVE
imu.observers

.{sub-id}

Allows an observer to connect and get a

continuous stream of IMU data

GET .skeleton

Returns the current skeleton data as a

structured object with body ID, XYZ

information on 32 different joints, and a

confidence level per joint

OBSERVE
skeleton.obse

rvers.{sub-id}

Allows an observer to connect and get a

continuous stream of bodytracking data

axis orientation and joint hierarchy. Joint coordinates are also

in axis orientations because it is widely used with commercial

avatars, game engines, and rendering software. The joint data

points were easily adapted to a .proto message that will be

discussed in the next subsection.

C. Final Desgin

1) Software: Kinect Service

Following the same development process as the LED

service; the first task was determining the Service’s API based

on the User Story discussed previously. The Kinect Service

API is shown in Table 2. This API is more complicated than

the previous service because it is accessing two different

attributes from the Kinect: inertial measurement units (IMU)

and skeletal. The previous example only accessed one set of

data called “lighting”. As a result, separate GET, OBSERVE,

and PUT functions had to be created per attribute that was being

accessed.

Again, protobuf was used to serialize the data. The code for

the packaged information is shown below. There are separate

messages for the IMU and skeleton attributes. The IMUEvent

message has four different fields including: the timestamp of

when the data was collected, gyroscopic data, accelerometer

data, and ambient temperature. The SkeletonEvent message

has two fields: BodyID and Joint. The Joint data is composed

of another message called JointID, which contains all 32 Joints

specified in the Azure Kinect API. Each Joint is described by

a helper XYZ message that contains the X, Y, and Z coordinates

of the Joint in space. The helper function also has Confidence

which is an enum ranging from Not Applicable, None, Low,

Medium, and High. This proto message was designed to match

the confidence enum from the Kinect API discussed above.

Confidence is a level dictated by the Kinect on how accurate

the tracking of a specific joint is. High is currently not

implemented by the Kinect hardware, but the Microsoft

developers kept it in for future updates [19]. Medium is

currently the highest level that can be returned; it indicates that

the joint is directly in the camera view and not obscured by

anything. If a joint has Low confidence it may be out of the

camera view, but the computer vision can extrapolate its

coordinates based off of the surrounding joints that are in frame.

Lastly, None means that the surrounding joints are also out of

frame so no predictions are made.

message IMUEvent{
 string timestamp = 1; // Duration between device
turn on and message send
 XYZ gryoscope_raw = 2;
 XYZ accelerometer_raw = 3;
 float temperature = 4;
}

message SkeletonEvent{
 int32 body_id = 1;
 JointID joint = 2;
}

message JointID{
 XYZ pelvis = 1;
 XYZ ear_right = 32;
}

// Helper for XYZ values
message XYZ {
 float x = 1;
 float y = 2;
 float z = 3;
 level Confidence = 4;

 enum level{
 option allow_alias = true;
 NOT_APPLICABLE = 0;

 NONE = 0;
 LOW = 1;
 MEDIUM = 2;
 HIGH = 3;
 }
}

The Fall 2020 update to the Ambient Edge package included

several structural changes made to Edge Services. This

included a new Command Line Setup region which creates a

command line prompt with options for service setup. It

specifies getters and setters for clustername, servicename, and

edgeurl which are variables used in creating the Edge

connection that helps services and clients attach to the network.

This was helpful during testing because prior to the update these

values were hardcoded into the program. Within the update

services also utilize a running while-loop to keep the program

thread alive. This update dealt with asynchronous running

issues that would time the program out if the response took too

long.

The following walks through the important sections of the

service code.

Within the Init() function default IMU and skeleton

messages are created. This was required in order to avoid the

error "System.NullReferenceException: 'Object reference not

set to an instance of an object.'” which occurs if the objects are

not initialized. The service will try to fill the object message,

but if it is not instantiated prior, it will throw an error. Since

the XYZ data for each joint is also a .proto message, each joint

has to be set to a new XYZ() object as well. For example,

skeletonevent.Joint.Pelvis = new XYZ() must be instantiated

before populating the pelvis data.

After the Edge connection is opened, StartCamera() is

called. StartCamera() is a function in the camera control region

that opens the Kinect device, configures it, and then starts the

IMU capture and body tracking capture. The StopCamera()

function stops the Kinect camera and IMU collection and

disposes of the camera properly so that the device is not

overloaded.

In the Register Routes region, the different service routes

discussed above are created. Since there are also two

observation routes for IMU and skeleton, two separate resource

managers are also set up. These managers deal with creating

and removing observers for the data streams.

The final regions of the program are the IMU Resource

Handlers and the Skeleton Resource Handlers. When calling

GET for IMU data, the IMUCapture() function runs. This

function calls the Kinect device to get an IMU sample, and then

the sample is formatted to fill the protobuf IMUEvent message.

This handler is very straightforward. The GET handler for

body tracking was more difficult to create. The GetHandler()

function calls the SkeletonCapture() function which configures

the payload and returns the Edge response. Within

SkeletonCapture(), PresentSkeletonTracking() is also called.

The beginning of the function flushes the Edge SkeletonEvent

to default in case it was previously populated with data. Then

it gets a capture from the Kinect device and enqueues the

capture in the body tracker function. Finally, within a large for-

loop, the function gets all of the bodies within the capture and

assigns a Body ID along with populating the Kinect joint data

into the protobuf message format. This required using a large

switch statement to check which joint was being read from the

Kinect data and then properly assigning it to the correct

protobuf joint.

2) Software: Console and Unity Client Iterations

The development for the Kinect Client had multiple

iterations leading up to a Unity Integrated Client. The first

iteration was a simple console client that was used to test the

service usage. The client tests GET and ASYNC GET requests

for the IMU and skeleton data. It also sets up an observer for

each resource for a certain amount of time, then closes the

connection. In this client all of the joint data is printed to the

console.

The second iteration of the console Kinect Client test using

the different body tracking data. This program sets up an

observer to stream the body tracking data. Using the data, it

will print to console if the user’s right hand, left hand, or both

hands are raised. This was a simple way to test if the body

coordinates were working together correctly. To see if a hand

was raised the program checks if the Y coordinate of the hand

joints are greater than the Y coordinate of the head. The test

was simple but successful, and this type of gesture checking

could be used for future Unity games.

The next step was to create a Unity client that utilized the

Kinect data in a substantial way. Unity Integration was a brand-

new concept, and it had a steep learning curve. The first Unity

Client iteration involved modifying an example from Dr.

Carlson to establish an Edge connection to the Kinect service.

The scene shows a spinning sphere that displays the IMU data

and a cylinder that displays the skeleton data. Originally the

program was not updating the cylinder with data properly,

however it turned out to be an issue of trying to access the IMU

and skeleton data synchronously. This was not an issue in

previous clients, so it will have to be furthered explored in the

Unity setting.

The last Unity Client that was completed for this project was

a scene containing a ball that moves with the players right hand

movement. A skeleton observer is instantiated at the beginning

of the program and runs for 30 seconds. Within the dispatcher

enqueue there is logic to update a Vector3 instance on the

sphere object with XYZ joint data from the right hand. Within

the Sphere object there is the Vector3 instance and on Update()

the instance’s x and y coordinates are used to transform the

sphere position. The coordinates are also transformed so that

movements on screen mirrors the player’s movements in front

of the camera. This client was time consuming because it was

difficult to determine how to transform the sphere based off the

Kinect coordinates. It required a lot of trial and error to get the

motion fluid. The Kinect coordinates needed to be divided by

a factor of 100 so that the sphere would not immediately fly out

of the scene. Inertia and acceleration also greatly affected

moving the ball with simple hand gestures. All in all, it was

still a successful demonstration of feasibility. This simple

sphere could be further expanded into a game where the user

has to collect tokens by moving across the screen. Body

tracking has a variety of applications within a smart space so

this service will be put to great use in the future.

V. CONCLUSION

Ambient Edge has been a unique and multi-faceted platform

to work with. Each project required delving into a different

style of computer engineering and problem solving. Designing

the LEDs required circuit setup, microcontroller programming,

and exporting high-level code to a Raspberry Pi. The Kinect

Service did not require hardware setup because it was a Plug

and Play camera. However, it did require a thorough

understanding of the Microsoft API and time to translate it to

the Edge platform. Prior to even starting to program I had to

understand what Ambient Edge was, how to platform worked,

the messaging style, networking, etc. Both services were

successfully completed despite the setbacks encountered each

semester.

There is a lot of room for further development on these

projects as more students join Ambient Lab. The LED service

could be expanded to include more lighting displays or modify

the Sharer function to have control over the speed of different

states (how fast things blink, move, etc.). The Kinect service

has so many different ways it could be expanded upon, but

working on more in depth Unity clients should be a priority.

Developing a full-fledged Unity game based on the body

tracking data sent real-time will really illustrate how robust and

low-latency the Edge Network is.

ACKNOWLEDGEMENTS

Developing services for Ambient Edge was a unique

graduate experience that could only be had by working in the

Ambient Computing Lab. I have learned so much about

people-centric engineering, making gradual progress towards a

greater vision, and having fun while doing it. Thank you, Dr.

Carlson, for fostering such an inspiring and exciting

environment.

REFERENCES

[1] "Smart Home - United States | Statista Market Forecast", Statista, 2020.
[Online]. Available: https://www.statista.com/outlook/279/109/smart-
home/united-states.

[2] K. Costello and M. Rimol, “Gartner identifies the top 10 strategic
technology trends for 2020,” Gartner, 21-Oct-2019. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2019-10-21-
gartner-identifies-the-top-10-strategic-technology-trends-for-2020.
[Accessed: 1-Feb-2021].

[3] S. Yi, Z. Qin, and Q. Li, “Security and Privacy Issues of Fog Computing:
A Survey,” Wireless Algorithms, Systems, and Applications Lecture
Notes in Computer Science, pp. 685–695, 2015

[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–
646, 2016.

[5] Shi, W.; Dustdar, S. The promise of edge computing. Computer 2016, 49,
78–81.

[6] Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A
Survey on the Edge Computing for the Internet of Things. IEEE Access
2017, 6, 6900–6919.

[7] Satyanarayanan, M. The emergence of edge computing. Computer 2017,
50, 30–39.

[8] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Proc. 3rd IEEE Workshop Hot Topics Web Syst.
Technol. (HotWeb), Washington, DC, USA, 2015, pp. 73–78.

[9] D. Linthicum, “Edge computing vs. fog computing: Definitions and
enterprise uses,” Cisco, 12-Dec-2019. [Online]. Available:

https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-
computing.html. [Accessed: 27-Feb-2021].

[10] I. Sittón-Candanedo, R. S. Alonso, Ó. García, L. Muñoz, and S.
Rodríguez-González, “Edge Computing, IoT and Social Computing in
Smart Energy Scenarios,” Sensors, vol. 19, no. 15, p. 3353, 2019.

[11] R. T. Fielding, “CHAPTER 5,” Fielding Dissertation: CHAPTER 5:
Representational State Transfer (REST), 2000. [Online]. Available:
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.
[Accessed: 23-Feb-2021].

[12] Google, “API Reference | Protocol Buffers | Google Developers,”
Protocol Buffers. [Online]. Available:
https://developers.google.com/protocol-buffers/docs/reference/overview.
[Accessed: 23-Feb-2021].

[13] "Adafruit NeoPixel Überguide", Adafruit Learning System, 2020.
[Online]. Available: https://learn.adafruit.com/adafruit-neopixel-
uberguide. [Accessed: 5-Feb-2020].

[14] “NeoPixels on Raspberry Pi,” Adafruit Learning System, 2021. [Online].
Available: https://learn.adafruit.com/neopixels-on-raspberry-pi.
[Accessed: 02-Mar-2020].

[15] "FastLED/FastLED", GitHub, 2020. [Online]. Available:
https://github.com/FastLED/FastLED/tree/master/examples.

[16] "Rufus31415/Sharer", GitHub, 2020. [Online]. Available:
https://github.com/Rufus31415/Sharer.

[17] Microsoft, “Azure Kinect DK – Develop AI Models: Microsoft Azure,” –
Develop AI Models | Microsoft Azure. [Online]. Available:
https://azure.microsoft.com/en-us/services/kinect-dk/. [Accessed: 18-
Dec-2020].

[18] Microsfot Azure, Azure Kinect Sensor SDK: Welcome. [Online].
Available: https://microsoft.github.io/Azure-Kinect-Sensor-
SDK/master/index.html. [Accessed: 10-Dec-2020].

[19] Microsoft, Azure Kinect Body Tracking SDK: Welcome. [Online].
Available: https://microsoft.github.io/Azure-Kinect-Body-
Tracking/release/0.9.x/index.html. [Accessed: 24-Feb-2021].

[20] Microsoft and Azure Kinect, “Microsoft.Azure.Kinect.Sensor 1.4.1,”
NuGet Gallery | Microsoft.Azure.Kinect.Sensor 1.4.1. [Online].
Available:
https://www.nuget.org/packages/Microsoft.Azure.Kinect.Sensor/.
[Accessed: 18-Dec-2020].

[21] Microsoft and Azure Kinect, “Microsoft.Azure.Kinect.BodyTracking
1.0.1,” NuGet Gallery | Microsoft.Azure.Kinect.BodyTracking 1.0.1.
[Online]. Available:
https://www.nuget.org/packages/Microsoft.Azure.Kinect.BodyTracking/
. [Accessed: 18-Dec-2020].

https://github.com/FastLED/FastLED/tree/master/examples
https://github.com/Rufus31415/Sharer

